EMI

Maeen 20 Apr 2018

Question

A breathing monitor consists of an 8-turn coil attached to a patient’s chest. As a breath is inhaled, the area of the coil varies from 0.120 m2 to 0.124 m2. The magnetic flux density of the Earth is 50 x 10-6 T and makes an angle of 22.5o with the axis of the coil.

If the patient inhales for 1.59s, what is the average emf induced in the coil during the inhalation?

A) 0.116 μV

B) 0.126 μV

C) 0.930 μV

D) 1.01 μV


Answer

To calculate the induced emf, the magnetic flux linkage of the coil has to be calculated.

Before inhalation,

Maeen-01.jpg
Maeen-02.jpg

After inhalation,

Maeen-03.jpg
Maeen-04.jpg

The induced emf can now be calculated.

Maeen-05.jpg

Answer is C

Brendan 4 Jun 2017 - 2

Question

A copper bar of length L is moving to the right with a uniform speed v in a region of uniform magnetic field of flux density B, directly perpendicularly downwards into the paper in the figure below.

The ends of the rods are rigidly connected to a voltmeter which moves with the rod. What is the reading on the voltmeter?

A) zero
B) non-zero reading less than Blv
C) BLv
D) more than BLv


Answer

Method 1:

Consider wires PQ and RS. Since both wires are moving through the magnetic field, both of them will have an induced e.m.f. of BLv.  

Based on Fleming’s Right Hand rule, the induced current of PQ and RS will both be upwards.

This means that the resultant current will be zero and the e.m.f. measured by the voltmeter will be zero.

Answer is A.


Method 2:

Consider the closed loop PQRS. As the loop moves through the magnetic field, the magnetic flux linkage remains the same since the area of the loop does not change.

Since there is no change in the magnetic flux linkage, by Faraday’s law there is no induced e.m.f. and the voltmeter will read 0 V.

Answer is A.

Brendan 4 Jun 2017 - 1

Question

An e.m.f. is induced in a coil placed in a changing magnetic field. The flux density B of this field varies with time as shown below.

Brendan-20170604-01.jpg

At which value of t is the magnitude of the e.m.f. induced in the wire a maximum?

A) 1 ms
B) 2 ms
C) 3 ms
D) 4 ms


Answer

The induced e.m.f. is given by the formula:

Hence the magnitude of the induced e.m.f. is given by:

This means that the induced e.m.f. will be the greatest when the rate of change of the magnetic flux density is the greatest.

From the graph, the rate of change of the magnetic flux density is the greatest when the gradient of the graph is the greatest.

This means that the induced e.m.f. will be the greatest at time t = 0 ms and t = 4 ms.

Hence the answer is D.

Yusong 04 Aug 2016

Question

A simple iron-core transformer is shown below:

Suggest why thermal energy is generated in the core when the transformer is in use.


Answer

Consider a section of the transformer core which is coloured blue as shown below:

As the magnetic field produced by the current in the primary coil increases, the magnetic flux linkage of the section of the coil will increase.

By Faraday’s Law, there will be an induced e.m.f. produced in the section of the core. By Lenz’s Law, there will be a current flowing in the section of the core which will produce a magnetic effect to oppose the change.

By the Right Hand Grip Rule, this means that a circular current must be flowing in the section of the core in order to produce the magnetic field. (This circular current is called the eddy current.)

Since an induced current is flowing in the core, by P = I 2 R, there will be power dissipated in the core and thermal energy is generated in the core of the transfomer.